

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Investigation of $\text{HgBr}(\text{B}^2\Sigma)$ excitation due to collisions of Kr ions with HgBr_2 molecules

Mohammad F. Mahmood^a

^a DEPARTMENT OF ELECTRICAL ENGINEERING HOWARD UNIVERSITY, WASHINGTON, DC, USA

To cite this Article Mahmood, Mohammad F.(1990) 'Investigation of $\text{HgBr}(\text{B}^2\Sigma)$ excitation due to collisions of Kr ions with HgBr_2 molecules', *Spectroscopy Letters*, 23: 9, 1183 — 1193

To link to this Article: DOI: 10.1080/00387019008054492

URL: <http://dx.doi.org/10.1080/00387019008054492>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**Investigation of $\text{HgBr}(\text{B}^3\Sigma^+)$ excitation
due to collisions of Kr^+ ions with
 HgBr , molecules**

MOHAMMAD F. MAHMOOD
DEPARTMENT OF ELECTRICAL ENGINEERING
HOWARD UNIVERSITY, WASHINGTON, DC 20059, USA

Abstract. - Electronic excitation of Hg and the HgBr radical has been observed in the present studies during collisions of HgBr, with Kr⁺ ions at different laboratory kinetic energies. Emission cross-sections for excitation of the most intense band of the HgBr($\text{B}^3\Sigma^+$, $v' = 0 \rightarrow \text{X}^3\Sigma^+$, $v'' = 22$) transition at 502 nm have been measured in the kinetic energy range of 100-1000 eV.

1. Introduction

There has been a considerable interest in developing highly efficient lasers for use in ocean optics, especially for transmitting communication signals to submarines and for the measurement of ocean depth near the coastal lines [1]. HgBr lasers meet most of the requirements needed for ocean optics. These lasers have been observed to lase in HgBr radical involving low lying vibrational levels of the electronically excited $\text{B}^3\Sigma^+$ state and high vibrational levels of

the ground $X^2\Sigma^+$ state during electrical or optical pumping of HgBr₂ vapor [2-9]. Since the laser transitions terminate to the high vibrational levels of the ground state, collisional quenching of these levels by gases such as N₂, Ar, Kr, etc. has been proposed to improve the performance of HgBr lasers [10, 11]. In a discharge medium containing these gases along with HgBr₂ vapor, a variety of processes such as excitation, ionization, dissociation, etc. take place leading to the formation of excited as well as ionized species. In a discharge medium containing Kr, a large number of Kr⁺ ions are expected to be produced due to collisions with electrons. These Kr⁺ ions when collide with HgBr₂ molecules present in the discharge medium, they contribute to the formation of the HgBr(B^{2\Sigma^+}) state and atomic mercury lines during collision induced dissociative excitation processes. The HgBr(B^{2\Sigma^+}-X^{2\Sigma^+}) emission intensity was observed [12] to be weak during dissociative excitation of HgBr₂ by Kr(³P₁). In this communication, observations are reported on the formation of HgBr(B^{2\Sigma^+}-X^{2\Sigma^+}) band system and atomic mercury lines during collisions of HgBr₂ with Kr⁺ ions at different laboratory kinetic energies. Emission cross sections have also been measured of the most intense band of the HgBr(B^{2\Sigma^+}-X^{2\Sigma^+}) transition corresponding to 502 nm at different laboratory kinetic energies of the projectile ions. This information may be useful in theoretical modeling and proper understanding of the kinetics of discharge pumped mercury bromide lasers.

2. Experiment

The experiment was performed by directing a mass selected ion beam of Kr^+ in a collision cell containing HgBr_2 vapor. The ions were produced by electron impact on flowing krypton gas through a dc discharge operating at low voltage. The ions were extracted from a small hole in the anode, accelerated to an energy of about 1 keV and focused into a high resolution Wien velocity filter [13] by means of a set of Einzel lenses. The desired mass-selected Kr^+ ions were then de-accelerated by using another set of electrostatic lenses into the collision cell (Fig. 1). The collision cell has a slot (2cm x 2mm) parallel to the ion beam and equipped with a sliding suprasil window for monitoring the emitted photons due to the ion-molecule reactions inside the collision cell. This cell has two apertures for entrance and exit of the ion beam. The mercury bromide vapor was generated by heating HgBr_2 salt in a container underneath collision cell. The container was made of copper and wrapped with a band heater. The temperature of the mercury bromide vapor was measured by a calibrated thermocouple (k-type, Keithley Instruments) and was displayed on a digital thermometer. This temperature was then used to calculate the vapor density of HgBr_2 . Ions were collected on a Faraday cup connected to a sensitive electrometer to measure ion currents. The Kr^+ ion current was observed to be in the range of 1nA to 1 μA in the kinetic energy range of 100 - 1000 eV. The ion source, Wien velocity filter, collision cell, HgBr_2 vapor generator, and ion collector (Faraday cup) were all housed in a stainless

steel chamber. This chamber was evacuated by two mechanical pumps and a cryogenic pump (CTI model Cryo-Torr-8) to a base pressure of about 10^{-7} Torr. The chamber pressure was monitored by a calibrated Bayer-Lampert ionization gauge. The resulting atomic and molecular emission photons were monitored in a direction perpendicular to the ion beam. The light emitted from the collision cell due to ion-molecule reactions involving Kr^+ and HgBr_2 molecules was dispersed by a 0.2m scanning monochromator (McPherson model 275 attached to a scanner model 789) and detected by a cooled (-25°C) photomultiplier tube (PMT) (EMI GenCom model 9863 QB/5). The output of the PMT was amplified and displayed on a photon counter (EMI Gen Com model AD-100 amplifier and C-10 counter). The output signal from the photon counter was sent to a multichannel analyzer (MCA) (Norland Corporation model 5680) for storage and plotting data.

3. Results and discussion

Emission spectra of the ($\text{B}^2\Sigma^+$ - $\text{X}^2\Sigma^+$) transition of HgBr radical as well as mercury atomic lines from energy levels as high as $\text{Hg}(6\ ^3\text{D})$ to various lower energy levels, according to the electric dipole selection rule $\Delta J = 0, \pm 1$, were observed in the wavelength range 580 - 300 nm during collisions involving Kr^+ ions at various kinetic energies (lab.) and HgBr_2 molecules. In the case of Ar^+ and HgBr_2 collisions, it was possible to observe $\text{HgBr}(\text{B}^2\Sigma^+ - \text{X}^2\Sigma^+)$ emission bands and atomic mercury lines at kinetic energies as low as 10 eV, whereas with Kr^+ and HgBr_2 collisions, these emissions were not observed below 100 eV under similar

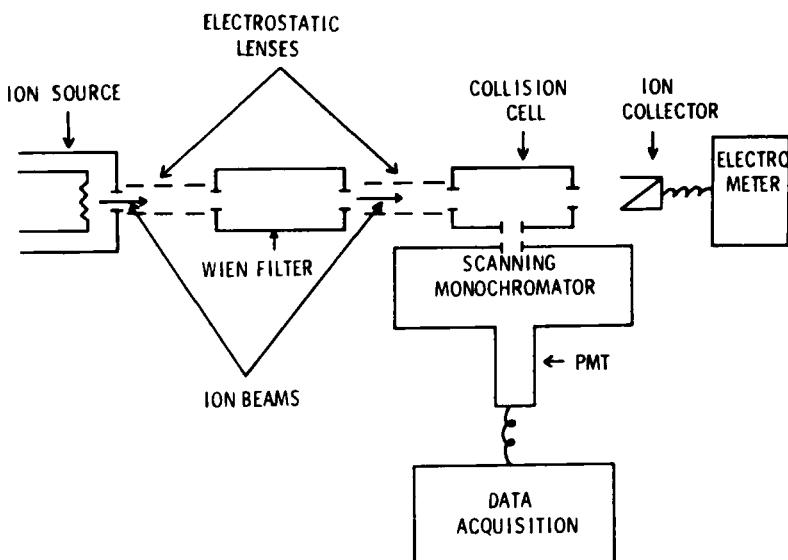
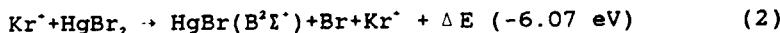



Figure 1 Experimental setup used in the present study.

experimental conditions. Figure 2 shows the emission spectra of the HgBr ($B^2\Sigma^+ - X^2\Sigma^+$) band system and atomic mercury lines which were observed during collisions of Ar^+ and Kr^+ ions at a laboratory kinetic energy of 700 eV with HgBr₂ molecules at a vapor density of about 0.15 Torr.

The following set of collision-induced dissociative excitation processes may be proposed to explain the observation of HgBr($B^2\Sigma^+ - X^2\Sigma^+$) band system and highly-excited states of atomic mercury transitions during collisions of Kr^+ ions with HgBr₂ molecules.

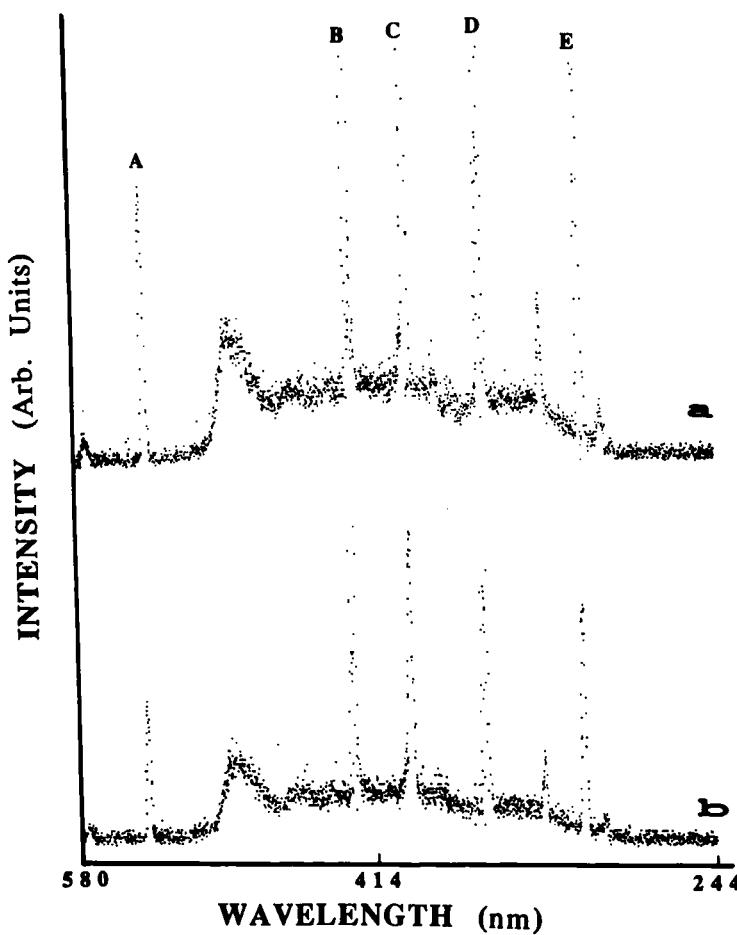
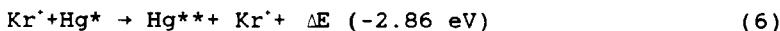
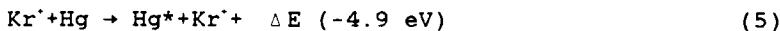
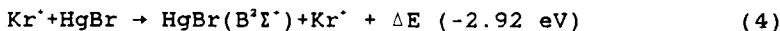


Figure 2 Emission spectra observed during collisions of HgBr_2 molecules (≈ 0.15 Torr) and Ar^+/Kr^+ ions at a laboratory kinetic energy of 700 eV.

A = $\text{Hg}(7^3\text{S}_1-6^3\text{P}_1)$

B = $\text{Hg}(7^3\text{S}_1-6^3\text{P}_1)$,




C = $\text{Hg}(7^3\text{S}_1-6^3\text{P}_0)$

D = $\text{Hg}(7^3\text{D}_3-6^3\text{P}_2)$,

E = $\text{Hg}(7^3\text{D}_2-6^3\text{P}_1)$

a: $\text{Ar}^+ + \text{HgBr}_2$

b: $\text{Kr}^+ + \text{HgBr}_2$

where $Hg^* = Hg(6^3P_1)$ and $Hg^{**} = Hg(7^3S_1)$ or $Hg(3^3D)$. These ΔE values were calculated by using the ground state dissociation energies [14] for the processes $HgBr_2 \rightarrow HgBr + Br$ (3.12 eV), $HgBr_2 \rightarrow Hg + Br_2$ (1.68 eV), and $HgBr \rightarrow Hg + Br$ (0.71 eV). It is because of the low dissociation energies of these ground state species, collision induced dissociative processes will occur before the excitation processes as indicated [see reactions (1) - (6)]. The observation of $HgBr(B^2\Sigma^+)$ state and atomic mercury lines at 546, 435.8, 404.6, 365 and 312.56 nm from highly excited states of atomic mercury may then be due to the efficient conversion of kinetic energies of Kr^+ ions into the internal energies of the by product species through the processes (4) - (6), mainly because of their low endothermicities. Such conversions have been observed in the past in other ion-molecules reactions [15].

By using the integrated intensities of the most intense band head of $HgBr(B^2\Sigma^+ - X^2\Sigma^+)$ transition at 502 nm corresponding to ($v' = 0 - v'' = 22$), emission cross-sections have been measured at different laboratory kinetic energies of the Kr^+ ions (see Table I). These cross-sections were calculated by using the following relation:

$$\sigma = I_s / (I_p n L),$$

where σ is the cross-section in cm^2 , I_s is the number of

Table 1

Measured emission cross-sections of $\text{HgBr}(\text{B}^2\Sigma^+, v' = 0 - \text{X}^2\Sigma^+, v'' = 22)$ formation due to Kr^+ and HgBr , collisions at different laboratory kinetic energies of the projectile ions.

Kinetic energy (eV)	Cross section ($\times 10^{-18} \text{ cm}^2$)
1000	0.12
900	0.61
700	1.91
500	1.65
300	0.98
100	0.31

photons/sec, I_p , is the number of primary ions/sec, n is the number density of HgBr , molecules in cm^{-3} , and L is the interaction length (2 cms) of the ion beam with HgBr , vapor inside the collision cell. It is to be noted here that I_p , is the number of photons/sec corrected for the detection efficiency of the optical system including the solid angle of light collection. I_p , is the absolute ion current measured at the Faraday cup. The vapor density of HgBr , molecules at a particular temperature was calculated by using the

thermodynamical constants [16]. The accuracy of these measured cross-sections depends upon the accuracy of measurement of I_s and n . The optical system was calibrated using calibrated lamp traceable to NBS in the wavelength range of 300-800 nm and rechecked by measuring the emission cross-sections of the hydrogen atomic lines observed in charge transfer reactions involving He^+ and H_2 gas at laboratory kinetic energies of 100 and 700 eV. These cross-sections were about 20% higher than those measured in the past [17]. The emission cross-sections of the most intense band of the $\text{HgBr}(\text{B}^2\Sigma^+, v' = 0 \rightarrow \text{X}^2\Sigma^+, v'' = 22)$ transition at 502 nm have been calculated in the laboratory kinetic energy range 100 - 1000 eV of the projectile ions with an estimated accuracy of 20 to 30%.

4. Conclusion

In conclusion, ion-molecule reactions involving collisions of HgBr , and Kr^+ ions have been studied and have measured the emission cross-sections of $\text{HgBr}(\text{B}^2\Sigma^+, v' = 0 \rightarrow \text{X}^2\Sigma^+, v'' = 22)$ formation at different kinetic energies. Collision-induced dissociative excitation processes seem to be the dominant mechanism in producing these emissions.

Acknowledgment

The technical assistance of Bill Pinkney and Eugene Jones is gratefully acknowledged.

References

- [1] SVANBERG S., *Contemp. Phys.* 21 (1980) 576.
- [2] PARKS J.H., *Appl. Phys. Lett.* 31 (1977) 297.

- [3] SCHIMITSCHEK E.J., CELTO J.E. and TRIAS J.A., *Appl. Phys. Lett.* **31** (1977) 608.
- [4] NIGHAN W.L., HINCHEN J.J. and WIEGAND W.J., *J. Chem. Phys.* **77** (1982) 3442.
- [5] BURNHAM R., *Appl. Phys. Lett.* **33** (1978) 156.
- [6] KVASNIK F. and KING T.A., *Appl. Phys. B* **28** (1982) 129.
- [7] McGEOCH M.W., HSIA J.C. and KLIMEK D.E., *J. Appl. Phys.* **54** (1983) 3723.
- [8] KUSHNER M.J., PINDROH A.L., FISHER C.H., ZNOTINS T.A. and EWING J.J., *J. Appl. Phys.* **57** (1985) 2406.
- [9] SHAY T.M., GOOKIN D., JORDAN M.C., HANSON F.E. and SCHIMITSCHEK E.J., *I.E.E.E. J. Quant. Electron.* **QE-21** (1985) 1271.
- [10] HELVAJIAN H., MANGIR M. and WITTIG C., *Chem. Phys. Lett.* **71** (1980) 177.
- [11] HELVAJIAN H. and WITTIG C., *J. Chem. Phys.* **76** (1982) 3505.
- [12] CHANG R.S.F. and BURNHAM R., *Appl. Phys. Lett.* **36** (1980) 397.
- [13] WAHLIN L., *Nucl. Inst. Methods.* **27** (1964) 55.
- [14] COOL, T.A., McGARVEY J.A. and ERLANDSON A.C., *Chem. Phys. Lett.* **58** (1978) 108.
- [15] KELLEY J.D., BEARMAN G.H., HARRIS H.H. and LEVENTHAL, J.J., *J. Chem. Phys.* **68** (1978) 3345.

[16] KUBASCHEWSKI O. and ALCOCK C.B., *Metallurgical Thermochemistry*, 5th ed., Pergamon Press, New York (1979) 364.

[17] ISLER R.C. and NATHAN R.D., *Phys. Rev. A6* (1972) 1036.

Date Received: 06/18/90
Date Accepted: 07/23/90